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ABSTRACT Biological evolution generates a surprising amount of site-specific variability in protein sequences. Yet, attempts at
modeling this process have been only moderately successful, and current models based on protein structural metrics explain, at best,
60% of the observed variation. Surprisingly, simple measures of protein structure, such as solvent accessibility, are often better
predictors of site-specific variability than more complex models employing all-atom energy functions and detailed structural modeling.
We suggest here that these more complex models perform poorly because they lack consideration of the evolutionary process, which
is, in part, captured by the simpler metrics. We compare protein sequences that are computationally designed to sequences that are
computationally evolved using the same protein-design energy function and to homologous natural sequences. We find that, by a
wide variety of metrics, evolved sequences are much more similar to natural sequences than are designed sequences. In particular,
designed sequences are too conserved on the protein surface relative to natural sequences, whereas evolved sequences are not. Our
results suggest that evolutionary simulation produces a realistic sampling of sequence space. By contrast, protein design—at least as
currently implemented—does not. Existing energy functions seem to be sufficiently accurate to correctly describe the key thermody-
namic constraints acting on protein sequences, but they need to be paired with realistic sampling schemes to generate realistic
sequence alignments.
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ALIGNMENTS of protein sequences can display large
amounts of position-specific variability. This variability

exists because selective pressures for proteins to fold and
function are not experienced uniformly across a protein se-
quence. The relative variability of a position in a sequence is
often associated with where that position is located in the
protein structure (Thorne 2007; Liberles et al. 2012; Arenas
et al. 2015; Echave et al. 2016). For example, patterns of
sequence variation differ between the core and surface of
proteins. The core tends to evolve more slowly, and be more

conserved, than sites on the surface (Kimura and Ohta 1974;
Overington et al. 1992; Mirny and Shakhnovich 1999;
Franzosa and Xia 2009; Ramsey et al. 2011; Tóth-Petróczy
and Tawfik 2011). These core sites also tend to have more
hydrophobic residues, while sites on the surface tend to have
more polar residues (Jones and Thornton 1996; Bastolla et al.
2007; Jackson et al. 2013). In general, sites that are con-
served are assumed to be more important for protein struc-
ture, stability, and, ultimately, function, even though most
sites in a protein are not directly involved in function.

While a significant body of literature exists examining how
protein structure and thermodynamic constraints interact
with evolutionary processes to shape site-specific variability,
current models explain, at best, 60% of variability (Echave
et al. 2016). Existing models span from ones using very sim-
ple metrics, such as relative solvent accessibility (RSA) or
weighted contact number (WCN), to ones using complicated
all-atom energy functions and protein design. One surprising
result from these efforts is that the simple models tend to
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perform as well as, or better than, the complicated models. In
particular, protein design has worked particularly poorly in
predicting site variability observed in natural sequence align-
ments (Jackson et al. 2013, 2016; Shahmoradi et al. 2014).

Why the more complex models fail to explain observed
sequence variation is unknown. All-atom stability models
should account for the same properties reflected in RSA
and WCN, as well as an array of other features. For example,
the mean interaction energy of a site with the rest of the
protein is a function of a site’s contacts, reflected in WCN
(Halle 2002). And thermodynamic stability is related to
RSA through the energetic cost of burying a side chain in
the protein core (Zhou and Zhou 2004). At the same time,
all-atom models remain limited in important aspects. They
generally do not accurately estimate the entropic contribu-
tion of the unfolded protein ensemble, and they tend to be-
come increasingly inaccurate as more changes are introduced
into the original protein sequence.

In addition to any biophysical limitations exhibited by all-
atommodels, there is another critical aspect by which protein
design methods deviate from the process of protein evolution
as it plays out in living organisms: Under evolution,mutations
are introducedonebyoneandeitherfixor are lost to drift. As a
consequence, a mutation that is deleterious in the current
genetic backgroundwill rarelyfix, even if itwere acceptable in
other genetic backgrounds. Proteindesign, by contrast, allows
the replacement of multiple amino acids at once, and, thus,
theoretically can create sequence configurations that are
thermodynamically allowed but not easily accessible by evo-
lution (Huang et al. 2016). In fact, a number of recent studies
have begun to examine how the state of the background se-
quence affects a the ability of a protein to accumulate substi-
tutions (Pollock et al. 2012; Shah et al. 2015; Goldstein and
Pollock 2016; McCandlish et al. 2016). These studies suggest
that the order in which changes to a sequence occur can affect
the propensity of a position to tolerate further mutations.
Therefore, the evolutionary history of a protein may influ-
ence how mutational space is sampled, and the order in
which states were sampled, and the length of time any spe-
cific state has been resident, may also influence sampling
behavior. Hence, the effect the evolutionary process has on
shaping site-specific variability could be considerable.

Here, we explore the influence of evolutionary history in
the generation of site-specific variability. By comparing protein
sequences produced under a model that combines evolutionary
history and stability constraints to sequences produced by a
model that considers stability constraints alone, we can begin
to tease apart the relationship between evolutionary history,
protein stability, and sequence variability. Togenerate sequences
in the absence of evolutionary history, we employ protein design
as implemented in the RosettaDesign suite (Kuhlman et al.
2003). In this method, all of the residues are replaced simulta-
neously. To add evolutionary history, we use the same Rosetta
force field but introduce substitutions sequentially, in a process
thatmimics evolution under natural selection (Teufel andWilke
2017). We then compare the sequences produced by each of

thesemethods to one another and to natural sequences.Wefind
that proteins generated by simulating evolution display similar
site-specific variability to natural proteins, whereas designed
sequences do not.

Methods

Protein structures and alignments

Weanalyzeda setof38proteinswithavailable structures from
Saccharomyces cerevisiae. This dataset had previously been
studied in the context of protein design by Jackson et al.
(2013), and it had originally been assembled by Ramsey
et al. (2011). For each structure, Ramsey et al. (2011) had
also assembled alignments of homologous sequences con-
taining at least 50 sequences each. Supplemental Material,
Table S1 in File S1 lists the protein data bank identifier (PDB
ID) for each of the template structures, and the number of
homologous sequences available in the respective alignment.

Generation of protein sequences

For each of the 38 protein structures, we computationally
generated alignments of 500 variant sequences via both
protein design and protein evolution. In all cases, we first
minimized the structures with Rosetta (Leaver-Fay et al.
2011). This minimization ensures that the energy difference
observed upon subsequent mutation can be attributed to the
effect of the mutation and is not simply caused by improved
amino-acid side-chain packing. Unless explicitly noted other-
wise, we initialized both protein design and protein evolution
simulations with the exact structures and amino-acid se-
quences corresponding to the PDB and chain identifiers listed
in Table S1 in File S1.

For protein design, we used the fixed-backbone method
implemented in RosettaDesign (Kuhlman et al. 2003). This
method only allows for movement of the side chains, while
the backbone is held fixed. The following command was
used:

./fixbb.linuxgccrelease -database rosetta_
database -s input.pdb -resfile ALLAA.res -ex1
-ex2 -extrachi_cutoff 0 -nstruct 1 -overwrite
-minimize_sidechains -linmem_ig 10

For evolutionary simulations, we used an accelerated or-
igin-fixation algorithm (Kachroo et al. 2015; Teufel andWilke
2017). In an origin-fixation model, mutations are sequen-
tially introduced, and either accepted or rejected based on
their effect on fitness. Under the accelerated version of this
model, beneficial mutations are always fixed, while deleteri-
ous mutations are exponentially suppressed. We have pre-
viously shown that this accelerated algorithm produces the
same steady-state distribution of genotypes visited as the
regular, nonaccelerated algorithm (Teufel and Wilke 2017).

To calculate stabilities for proteins during simulated evo-
lution, we used the get_fa_scorefxn function in the PyRosetta
(Chaudhury et al. 2010), and interpreted its result as the
stability DG of each proposed mutation. To convert protein
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stability into fitness, we use a soft-threshold model (Chen
and Shakhnovich 2009; Wylie and Shakhnovich 2011;
Serohijos et al. 2012), where the fitness fi of a protein i with
stability DGi is given by

fi ¼ 1
ebðDGi2DGthreshÞ þ 1

: (1)

Here, b is the inverse temperature, DGi is the stability of the
mutant protein, and DGthresh is the stability value at which
fitness has declined to 50% of its maximum. For the majority
of our simulations, we set DGthresh to the average score
obtained for the proteins designed on the same template struc-
ture. This was done to ensure that proteins generated by the
evolutionary model have similar stabilities as those produced
by the design method. In an additional set of simulations, we
set DGthresh to the maximum score (i.e., corresponding to the
least stable protein) obtained for the designed proteins.

To calculate the probability of fixation of a new mutation,
we first log-transformed fitness,

xi ¼ logðfiÞ ¼ 2 log
h
ebðDGi2DGthreshÞ þ 1

i
: (2)

We then calculated the probability of fixation of a new mu-
tation j in a background population of genotypes i as

pði/jÞ �
�

1 for xj. xi;
e22Neðxi2xjÞ otherwise;

(3)

where Ne is the effective population size. In all simulations,
we set Ne ¼ 100 and b ¼ 1:

We used a uniformmutation model throughout, i.e., every
amino acid was equally likely to mutate into every other
amino acid. However, we disallowed mutations to or from
cysteines, because cysteine disulfide bonds are not properly
handled by the Rosetta energy function. We ran each simu-
lation until 5000 substitutions had occurred. Simulations
were run for a fixed number of substitutions to ensure similar
amounts of divergence from the each of the starting tem-
plates, allowing for a fair comparison to the designed se-
quences. However, we note that this choice is equivalent to
selecting a random substitution rather than selecting a se-
quence at a random time point, and it enriches for genotypes
with high substitution rates.

Data analysis

Site-specific variability and amino acid distributions: We
separatelyaligned the500resulting sequencesproducedbyeach
methodforeachof the38structures.Toquantify thevariabilityof
sites in these alignments, we calculated the site entropy

Hi ¼ 2
X
j

pij ln pij; (4)

where pij is the frequency of amino acid j at column i in the
alignment. Exponentiating Hi; we obtain the effective num-
ber of amino acids,

neff ¼ expðHiÞ: (5)

This number falls between 1 and 20, and can be interpreted as
the number of different amino-acid types present at a given
site.

To compare an amino-acid distribution to a reference
distribution (e.g., to compare the amino-acid distribution of
designed sequences to that of natural sequences), we used
the Kullback-Leibler (KL) divergence, defined as

DKL
i ¼

X
j
pijlnðpij=qijÞ: (6)

Here qij is the frequency of amino acid j in column i of the
sequence alignment to compare, and pij is the relative fre-
quency in the reference alignment. If any qij or pij were zero,
we added 1=20 to each amino acid count before calculating
the frequencies. To compare natural alignments to themselves,
we randomly split each alignment into two equal-sized sets of
sequences, and then calculated the KL divergence of the first
half against the second.

Residue buriedness: To estimate the buriedness or exposure
of a residue, we calculated its RSA. RSA ranges from 0 for
completely buried residues to 1 for completely exposed ones
(Tien et al. 2013). We first calculated the Accessible Surface
Area (ASA) of each residue in each structure, using the soft-
ware DSSP (Kabsch and Sander 1983). ASA indicates the
surface area of a given residue that is accessible to water.
These ASA values were then normalized by the maximum
ASA value for a given amino acid to obtain RSA (Tien et al.
2013). Residues at sites with higher RSA have a larger part of
the residue surface exposed to solvent and are generally
closer to the protein surface, while residues with lower RSA
are closer to protein core. We defined sites with RSA# 0:05
as buried sites, and sites with RSA. 0:05 as exposed.

Packing density: We estimated residue packing density via
the side-chain WCN, defined as

WCNi ¼
X
j 6¼i

1
�
r2ij; (7)

where i indicates the focal residue, rij is the distance between
the geometric centers of the side chains of the focal residue
i and of residue j, and the sum runs over all residues j in the
protein. Since packing density tends to have a negative cor-
relation with site entropy and RSA, here we use the inverse of
WCN (iWCN ¼ 1=WCN) for all correlation calculations, as
was done previously by Shahmoradi et al. (2014).

We used side-chain WCN as defined above rather than
WCN calculated from distances of Ca atoms because side-chain
WCN provides themore robust determinant of evolutionary var-
iation (Marcos and Echave 2015; Shahmoradi andWilke 2016).

Score matching: To verify that our resultswere not caused by
differences in stability between the designed and evolved
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sequences, we generated, for each template protein structure,
subset alignments with matched stability scores between the
designedandevolvedsequences.Wecarriedout thismatching
as follows. We first identified the intersection of the stability
ranges between designed and evolved proteins. This inter-
section generally coincided with the stability range of the
evolved proteins, i.e., evolved proteins had a narrower stabil-
ity range than the corresponding designed proteins. We then
identified, for each designed protein in that range, the
evolved protein with the most similar score. Each designed
protein was matched with exactly one unique evolved pro-
tein, and we stopped the matching step when there were no
more designed or evolved proteins available for matching in
the stability-range intersection. The resulting matched align-
ments consisted of between 19 and 433 sequences, with a
median of 70.

Data availability

All data and analysis scripts are available in a git repository at:
https://github.com/reductase4/evol_sim_vs_rosetta.git An
archive of this repository has been deposited with Zenodo,
and is available at DOI 10.5281/zenodo.1160646.

Results

Toexaminehowevolutionaryhistory affects the emergence of
sequence variability, we analyzed two distinct sets of protein
sequences: one produced by protein design (no evolutionary
history, all amino acids are replaced at once) and one pro-
ducedbyevolutionary simulation (aminoacids are introduced
one at a time and the protein need to remain viable at all
times). Importantly, for both approaches, we used the same
methods to replace amino acids andevaluate the energy of the
resulting protein structures, based on the fixed-backbone
protein-design algorithm implemented in Rosetta (Kuhlman
et al. 2003; Leaver-Fay et al. 2011). For each approach, we
generated 500 sequences each from 38 template structures.
To compare these sequences to natural sequences, we ana-
lyzed alignments of at least 50 homologs for each of the
38 protein structures, taken from Jackson et al. (2013) (see
also Table S1 in File S1). We found that the sequence diver-
gence in the simulated alignments was comparable to that of
the natural sequences, even though divergence in designed
sequences was somewhat larger than divergence in evolved
sequences (Figure S1 in File S1).

Amino-acid distributions

We first compared the overall amino-acid frequencies be-
tween natural and simulated sequences (Figure S2 in File
S1), because prior work comparing designed sequences to
the same alignments of natural sequences had shown signif-
icant discrepancies, in particular for hydrophobic residues in
buried sites (Jackson et al. 2013). We found that these dis-
crepancies had mostly disappeared in our newly generated
dataset. This difference may be due to an additional round of
energy minimization we performed here, or (more likely) to

recent updates to the energy function in Rosetta (Leaver-Fay
et al. 2011).

However, there was now a substantial discrepancy for
lysine, in that it was much more prevalent at exposed sites
in designed sequences than in natural sequences.We also saw
a moderate excess of arginines. We note that both are amino
acids with a large number of rotamers, which the design
algorithm biases toward. Importantly, there were only minor
differences in amino-acid frequencies between evolved se-
quences and natural sequences. Because our evolutionary
simulation made all mutations to different amino acids
equally likely, we might have expected that amino acids
encoded by four- or sixfold degenerate codon families would
have been under-represented in comparison to their frequen-
cies in natural alignments,which evolve at theDNA level, and,
hence, can be affected by codon degeneracy. Though these
amino acids are not under-represented, neither in the evolu-
tionary simulations nor in protein design, this suggests that
the energetic interactions between amino acids at different
sites impose stronger constraints on amino-acid frequencies
than does mutation bias. In summary, while evolutionary
simulations outperformed protein design specifically for lysine
and arginine, overall the differences between both approaches
and natural sequences were minor.

While the analysis of aggregate amino-acid frequencies is
useful as afirst sanity check, it doesnot addresswhether either
simulation approach places the correct amino acids at indi-
vidual sites. Therefore, we next calculated the average KL
divergence for each protein, which quantifies the extent to
which site-specific amino-acid distributions of simulated se-
quences are comparable to those of natural sequences. The
lower theKLdivergence, themore similar thedistributions. As
a control, we compared natural sequence to themselves, by
randomly dividing each alignment into two groups and then
comparing one to the other. We found that the evolutionary
simulation produced sequences that were more similar to
natural sequences than were the designed sequences (paired
t-test, p, 2:23 10216; Figure 1). Two exceptions (indicated
as outliers in the middle boxplot of Figure 1) were chain D
from the Sfi1p/Cdc31p complex (PDB ID: 2GV5) and initia-
tion factor 5a (PDB ID:1XTD). This analysis suggests that
accounting for evolutionary history is an important compo-
nent in simulating realistic protein sequences.

Patterns of site variability

To investigate site-specific sequence variability, we calculated
the effective number of amino acids neff (Equation 5) for each
site in each protein. We found that sequences produced by
simulating protein evolution showed similar overall variability
to natural sequences (paired t-test, p ¼ 0:68; Figure 2),
whereas designed sequences had significantly less variability
compared to natural sequences (paired t- test, p, 2:23 10216;

Figure 2). Importantly, designed sequences had a lower mean
effective number of amino acids, even though overall sequence
divergence was higher in designed sequences than in evolved
sequences (Figure S1 in File S1). This seemingly paradoxical
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observation implies that designed sequences, relative to the
evolved sequences, experienced changes at a larger number
of sites but toward a smaller set of different amino acids.

Just because two alignments have a comparable mean neff
does not mean that the same sites are more variable or more
conserved in the two alignments. Therefore, we next calcu-
lated the correlations between neff among alignments gener-
ated by different methods (designed sequences, evolved
sequences, and natural sequences). We found that the corre-
lations in site variability between evolved and natural se-
quences were much higher than those between designed
and natural sequences (Figure 3). The former were all posi-
tive and ranged between � 0:2 and 0.7, whereas the latter
did not exceed � 0:3; and several fell below zero. Thus vari-
able and conserved sites in evolved sequences tend to coin-
cide with the same types of sites in natural sequence
alignments, but the same is not true for designed sequences.

Site variability in the context of structural features

Site-specific variability tends to correlate with features in the
protein structure, most notably solvent exposure and packing
density (Kimura and Ohta 1974; Chang et al. 2013; Yeh et al.
2013; Huang et al. 2014; Echave et al. 2016). Since these
variability patterns are likely driven by biophysical con-
straints generated from the protein structure, we would ex-
pect that they would be recapitulated in computationally
designed proteins. Yet, prior work had shown that site-
variability patterns in designed proteins did not recapitulate
thepatterns observed in natural sequences—buried sites in
designed sequences were not sufficiently conserved, or, alter-
natively, exposed sites not sufficiently variable (Jackson et al.
2013).

We found here again that site variability in designed
proteins did not appreciably correlate with RSA (Figure 4).
Correlations between neff and RSA ranged between20:2 and
0.2. In comparison, for natural sequences, these correlations
fell mostly between 0.2 and 0.6. For evolved sequences, we
observed even higher correlations, with most values falling

between 0.5 and 0.7 (Figure 4). Results were similar when
we used inverse Weighted Contact Number (iWCN) instead
of RSA (Figure S3, D–F in File S1).

One potential caveat to these findings is that designed and
evolved sequences may fall into a different range of thermo-
dynamic stability, assessed in ourmodel via the Rosetta score.
Indeed, even though we calibrated the stability threshold
DGthresh used during evolution to the mean stability for pro-
teins designed to the same template (seeMethods), we found
that evolved proteins generally had a narrower range of sta-
bilities than designed proteins and were, on average, more
stable (Figure S4 in File S1). In principle, these differences in
stability distributions could be the cause for the other ob-
served differences between designed and evolved sequences.

We addressed this caveat in two ways. First, we generated
alignment subsets for each template structure such that each
designed sequence retained in an alignment was matched
one-to-one to a unique evolved sequence with comparable
stability score and homologous structure. This procedure
yielded near-identical stability distributions in most cases
(Figure S5 in File S1). Yet the observed pattern of RSA–neff
correlations was virtually unchanged from that in the original
dataset (Figure S6A in File S1). Second, for five arbitrarily
chosen structures, we ran evolutionary simulations, where
we used the stability of the least stable designed structure
(i.e., the maximum observed score among the designed struc-
tures) as stability threshold value. In those simulations,
evolved structures were indeed much less stable than before
(Figure S7 in File S1). Yet again, there was virtually no
change in the observed pattern of RSA–neff correlations (Fig-
ure S6B in File S1).

Evolving designed sequences

To recap, we have found that, by any metric considered,
evolved sequencealignments lookedmuchmore realistic than

Figure 2 Mean effective number of amino acids for designed, evolved,
and natural sequences. Evolved and natural sequences had comparable
mean effective numbers of amino acids (paired t-test, p ¼ 0:68), whereas
designed sequences had significantly lower mean effective num-
bers (paired t- test, p,2:2310216). One exception was chain D of the
Sfi1p/Cdc31p complex (PDB ID: 2GV5, outlying data point in the boxplot
for evolved sequences), for which evolutionary simulation yielded a
much smaller mean effective number of amino acids relative to all other
cases.

Figure 1 Mean KL divergence of designed, evolved, and natural se-
quences to natural sequences. Natural sequences were compared to
themselves by randomly splitting alignments into two groups and calcu-
lating the KL divergence between them. A lower KL divergence indicates
that the amino acid distributions at individual sites are closer to that of
natural proteins.
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designed sequence alignments. Further, we have seen that
these differences between evolved and designed sequences
are not caused by differences in protein stability. However,
there do remain two potential reasons why we may have
obtained these results: (i) evolutionary simulation adds an
important element to sequence generation, one that is missed
in the currently used protein design algorithm; (ii) evolved
sequences look more similar to natural sequences simply
because they have not diverged as much, and, thus, retain
much historical information about the natural ancestral se-
quence.Todistinguishbetween these twoscenarios,weranan
additional set of evolutionary simulations, where we started
each replicate evolutionary trajectory from one of the pre-
viously designed sequences. We performed this additional set
of simulations for a subset of 10 arbitrarily chosen structures
(Table S1 in File S1). We refer to sequences generated in this
manner as “evolved from design.” Importantly, the mean se-
quence divergence in these sequences was significantly
higher than in the corresponding natural or evolved se-
quences, and almost as high as in the designed sequences
(Figure S8 in File S1).

From these additional simulations, we found that the
evolutionary process produced more naturally looking align-
ments, even when designed proteins were used as starting
points (Figure 5). Sequences that were evolved from design
had a lower KL divergence than designed sequences (Figure
5A), a higher mean effective number of amino acids (Figure
5B), higher correlations of site-variability patterns to natural
alignments (Figure 5C), and higher correlations between neff
and RSA (Figure 5D). However, by all these metrics, se-
quences evolved from design were intermediate between
designed sequences and sequences evolved from a natural
sequence. These intermediate metrics reflect that the designed
sequences have a site-wise preference for a smaller set of
amino acids than do the evolved sequences (Figure 2), and

this preference is only partly undone by subsequent evolution.
While evolution could expand the set of acceptable amino
acids at some sites, other sites remained frozen in the narrow
area of sequences space supplied by design, and might require
much longer evolutionary simulations to become unfrozen.

Using simulated sequences as a predictor of
site variability

Finally, we asked how well neff from simulated sequences
performed as predictor of natural site variability relative to
the other commonly used predictors RSA andWCN. In agree-
ment with prior work (Shahmoradi et al. 2014; Jackson et al.
2016), we saw that the neff from designed sequences per-
formed poorly relative to RSA (Figure S9A in File S1). How-
ever, the neff from evolved sequences performed similarly to
RSA (Figure S9B in File S1), and neff from evolved from de-
sign sequences displayed intermediate performance (Figure
S9C in File S1). Results were similar for the iWCN, except
that correlations between neff and iWCN tended to be some-
what stronger than they were between neff and RSA (Figure
S9, D–F in File S1), consistent with a large body of prior work
finding that WCN tends to correlate more strongly with evo-
lutionary variation than does RSA (Yeh et al. 2013, 2014;
Shahmoradi et al. 2014; Marcos and Echave 2015; Echave
et al. 2016). Unlike RSA, WCNmeasures both the local struc-
tural constraint around a residue and the global arrangement
of amino acids in the entire structure Shahmoradi and Wilke
(2016). The elevated correlations seen with WCN relative to
RSAmay thus, in part, be driven by factors other than folding
constraints, such as the location of active sites in enzymes
(Jack et al. 2016).

Discussion

Wehave examined howevolutionary history affects the emer-
gence of sequence variability by comparing protein align-
ments generated by two different methods. The first was a

Figure 4 Spearman correlations between RSA and neff for designed,
evolved, and natural sequences. Correlations for designed sequences
were significantly lower than for natural sequences (paired t-test,
p ¼ 1:5310214). By contrast, correlations for evolved sequences were
significantly higher than for natural sequences (paired t-test,
p ¼ 6:48310212). The individual correlation coefficients for each struc-
ture are shown in Figure S3, A–C in File S1.

Figure 3 Spearman correlations between neff for natural and either
evolved or designed sequences. Each dot represents the correlation co-
efficients for one protein. Correlations are substantially higher when com-
paring evolved to natural sequences than when comparing designed to
natural sequences (paired t-test, p,2:2310216).
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traditional protein-design algorithm implemented in
RosettaDesign (Kuhlman et al. 2003). The other was an evolu-
tionarymethod that used theRosetta energy function to simulate
protein evolution according to population-genetics principles
(Teufel and Wilke 2017). Both methods impose the same
thermodynamic constraints on the simulated sequences,
but they impose different constraints in their sampling of se-
quence space. For both methods, we compared the simulated
alignments to homologous alignments of natural sequences.
We found that sequences generated by simulated evolution
displayed site-specific variation quite similar to that of natu-
ral sequences, whereas patterns of variation were substan-
tially different in designed sequences. Our evolved sequences
also showed correlations between sequence variation and
residue burial or packing similar to that of natural sequences
whereas the designed sequences did not. Finally, by simulat-
ing additional evolution with designed sequences as starting
points,wedemonstrated that the improvements in site-variability
metrics were caused by the evolutionary process itself, and
not by insufficient divergence from the starting sequence
during the evolutionary simulations.

While both evolutionary and protein-design methods can
be used to generate proteins that fold and function, they differ
in how they explore sequence space. In particular, the widely
used RosettaDesign (Kuhlman et al. 2003) takes a template
structure, strips all residue side chains, and then simulta-
neously replaces them by different side chains. Subsequently,

additional side-chain replacements are made with the goal of
maximizing protein stability. This process of designing a se-
quence can be repeated a number of times to generate a set of
diverse sequences. This and similar approaches have proven
fruitful for protein engineering. For example, protein design
methods have been used to engineer proteins that bind an
influenza virus (Fleishman et al. 2011), to create enzymes
(Röthlisberger et al. 2008), and to develop novel protein
folds (Kuhlman et al. 2003). However, this method of gener-
ating functional proteins is very unlike how natural systems
generate them. Natural proteins accumulate changes mostly
sequentially, one mutation at a time, rather than having their
entire sequence modified in a single instance.

Protein design is frequently billed as being able to explore a
much larger sequence space than does evolution, because the
design process starts from scratch with a random sequence,
and, thus, in theory shouldbeable to reachanyplace in sequence
space, whereas evolution can only explore near neighbors to
already existing sequences (Huang et al. 2016). However, we
did not find this to be the case in our simulations. Specifically,
even though our designed sequences had a higher mean se-
quence divergence than did evolved or natural sequences (Fig-
ure S1 in File S1), designed sequences had, on average,
smaller effective numbers of amino acids at each site (Figure
2). Thus, on average, individual sites were less variable under
design than they were under evolution, natural or simulated.
Wewere able to explain this unexpected result by investigating

Figure 5 Comparison between designed se-
quences and sequences evolved from de-
sign. (A) Mean KL divergence of designed,
evolved from design, and natural sequences.
The KL divergence was lower for evolved
from design sequences than for designed
sequences (paired t-test, p ¼ 2:5731026).
(B) Mean effective number of amino acids
for designed, evolved from design, and nat-
ural sequences. The mean effective number
(neff) was higher for evolved from design
sequences than for designed sequences
(paired t-test, p ¼ 1:9131025) (C) Spear-
man correlations of neff between natural
and evolved from design sequences and nat-
ural and designed sequences. Each dot rep-
resents one correlation coefficient value for
one protein. Correlations with neff from nat-
ural sequences were significantly higher for
neff from evolved from design sequences
than for neff from designed sequences
(paired t-test, p ¼ 6:2331025). (D) Spear-
man correlations between site entropy and
RSA of designed, evolved from design, and
natural sequences. Correlations were signif-
icantly higher for evolved from design se-
quences than designed sequences (paired
t-test, p ¼ 1:73 1027); however, correlations
for evolved from design and natural sequences
were comparable (paired t-test, p ¼ 0:62).
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how exactly the initial sequences are chosen under design. The
initial sampling of side chains is done from a rotamer library
(Kaufmann et al. 2010), rather than uniformly from the
20 amino acids. Consequently, amino acidswithmany rotamers
are over-represented in the initially chosen sequence. The sub-
sequent optimization algorithm is constrained by the biased
pool of initial sequences, and cannot undo the unequal sam-
pling. We can see the remnants of the oversampling of certain
amino acids in the excess of lysine and arginine in the overall
amino-acid frequencies (Figure S2 in File S1), as both are
amino acids with a very large number of rotamers. When we
subjected the designed sequences to further evolution, a wider
range of substitutions became allowed. Therefore, we saw the
evolved-from-design sequences approaching site variabilities
similar to those displayed by the original evolved and natural
sequences (Figure 5).

Our findings are consistent with recent works on evolu-
tionary entrenchment (Pollock et al. 2012; McCandlish et al.
2015, 2016; Shah et al. 2015; Goldstein and Pollock 2016),
which argue that the propensity of a protein to acquire position-
specific substitutions varies over time, as previously accumu-
lated mutations become entrenched in the protein structure
and slowly alter the constraints imposed on other amino acids
in the structure. Here, entrenchment was visible in particular
for designed and evolved-from-design sequences, which were
highly and somewhat biased by the initial sampling process of
protein design.

Even though our evolutionary simulations considered both
structural constraints and a realistic, sequential sampling of
sequence space, we found that they did not fully capture the
relationship between sequence variability, buriedness, and
packing density observed in natural sequences. In particular,
site-specific variabilitywas correlatedmore stronglywithRSA
in our evolved sequences than is observed in nature. This
exaggerated relationship between sequence variability and
RSAmay be caused by the simplistic assumption of ourmodel
that selection acts exclusively on protein stability. In natural
organisms, numerous selection pressures beyond just protein
stability act on protein sequences (Thorne 2007; Teufel et al.
2012; Serohijos and Shakhnovich 2013, 2014; Chi and Liberles
2016; Echave andWilke 2017), and these other selection pres-
sures should weaken the observed relationship between RSA
and sequence variability.

Thereare several caveats toourwork. First, throughout this
project, we have used a fixed backbone model, even though
allowing for a flexible backbone during design may produce
morenatural-looking sequences (Jackson et al.2013;Ollikainen
and Kortemme 2013). However, since we used the same fixed
backbone model for both protein design and protein evolution,
we do not expect it to have much bearing on the observed dif-
ferences between designed and evolved sequences. Moreover,
Jackson et al. (2013) had previously shown that, even with
flexible backbone design, the correlation between solvent ac-
cessibility and site variabilitywas lower than observed in natural
sequences. Second, the accelerated origin-fixation model we
used for evolution changes the order in which substitutions

are accumulated, but we expect this reordering to be of little
consequence for themetrics considered in this work (Teufel and
Wilke 2017). Third, the amount of divergence generated during
simulated evolution depends on the length of time for which
the simulations are run, and, thus, is highly dependent on
the parameter choices made for the simulations. We chose
to run the evolutionary simulations for 5000 substitutions in
each trajectory (for proteins of at most several hundred
amino acids in length), to ensure that the amount of diver-
gence generated during simulation would exceed that ob-
served in typical natural homologs. Finally, it is possible that
a modified design algorithm that samples initial sequences
from a uniform distribution of amino acids rather than from
a distribution of rotamers would produce sequence align-
ments on par with those we generated here under simulated
evolution. Testing this hypothesis, however, falls beyond
the scope of the present paper.
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